Bax-like protein Drob-1 protects neurons from expanded polyglutamine-induced toxicity in Drosophila.
نویسندگان
چکیده
Bcl-2 family proteins regulate cell death through the mitochondrial apoptotic pathway. Here, we show that the Drosophila Bax-like Bcl-2 family protein Drob-1 maintains mitochondrial function to protect cells from neurodegeneration. A pan-neuronal knockdown of Drob-1 results in lower locomotor activity and a shorter lifespan in adult flies. Either the RNAi-mediated downregulation of Drob-1 or overexpression of Drob-1 antagonist Buffy strongly enhances the polyglutamine-induced accumulation of ubiquitinated proteins and subsequent neurodegeneration. Furthermore, ectopic expression of Drob-1 suppresses the neurodegeneration and premature death of flies caused by expanded polyglutamine. Drob-1 knockdown decreases cellular ATP levels, and enhances respiratory inhibitor-induced mitochondrial defects such as loss of membrane potential (Deltapsim), morphological abnormalities, and reductions in activities of complex I+III and complex II+III, as well as cell death. Taken together, these results suggest that Drob-1 is essential for neuronal cell function, and that Drob-1 protects neurons from expanded polyglutamine-mediated neurodegeneration through the regulation of mitochondrial homeostasis.
منابع مشابه
Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Disease alleles contain a trinucleotide repeat expansion of variable length, which encodes polyglutamine tracts near the amino terminus of the HD protein, huntingtin. Polyglutamine-expanded huntingtin, but not normal huntingtin, forms nuclear inclusions. We describe a Drosophila model for HD. Amino-terminal fragments...
متن کاملExpanded ATXN3 frameshifting events are toxic in Drosophila and mammalian neuron models.
Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleter...
متن کاملcAMP-response element-binding protein and heat-shock protein 70 additively suppress polyglutamine-mediated toxicity in Drosophila.
Gene-specific expansion of polyglutamine-encoding CAG repeats can cause neurodegenerative disorders, including Huntington's disease. It is believed that part of the pathological effect of the expanded protein is due to transcriptional dysregulation. Using Drosophila as a model, we show that cAMP-response element-binding protein (CREB) is involved in expanded polyglutamine-induced toxicity. A mu...
متن کاملdAtaxin-2 Mediates Expanded Ataxin-1-Induced Neurodegeneration in a Drosophila Model of SCA1
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders sharing atrophy of the cerebellum as a common feature. SCA1 and SCA2 are two ataxias caused by expansion of polyglutamine tracts in Ataxin-1 (ATXN1) and Ataxin-2 (ATXN2), respectively, two proteins that are otherwise unrelated. Here, we use a Drosophila model of SCA1 to unveil molecular mechanism...
متن کاملPolyglutamine disease toxicity is regulated by Nemo-like kinase in spinocerebellar ataxia type 1.
Polyglutamine diseases are dominantly inherited neurodegenerative diseases caused by an expansion of a CAG trinucleotide repeat encoding a glutamine tract in the respective disease-causing proteins. Extensive studies have been performed to unravel disease pathogenesis and to develop therapeutics. Here, we report on several lines of evidence demonstrating that Nemo-like kinase (NLK) is a key mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 24 14 شماره
صفحات -
تاریخ انتشار 2005